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MONTE CARLO COMPUTATION OF THE STATISTICS
OF THE MIDCOURSE VELOCITY CORRECTIONS
FOR A LUNAR MISSION
By Gerald L. Smith and Burnett L. Gadeberg

Ames Research Center
Moffett Field, Calif.

SUMMARY

A Monte Carlo method is described for obtaining the statistics of the
total velocity correction employed in the multicorrection midcourse guidance
of a space vehicle. The problem is analyzed to show the statistical correla-
tion which exists between successive corrections and to develop equations
necessary for implementing a Monte Carlo computer program. Covariance matri-
ces of the individual corrections, computed by means of prior simulation of
the problem, are required as inputs to the program.

Results are given for the application of the technique to the midcourse
guidance phase of a circumlunar flight having five velocity corrections.
Analysis of the results indicates that commonly used estimates of fuel
requirements from calculated rms velocity corrections may result in an exces-
sive fuel load.

INTRODUCTION

The problem of determining the amount of fuel required for midcourse
guidance of a lunar or interplanetary vehicle can be a critical one. Suffi-
cient fuel must be provided to ensure the probability of mission success; how-
ever, too much fuel could mean that the payload is diminished and the mission
less profitable. Thus, methods for accurately computing the fuel requirement
are of considerable interest.

In general, this is a statistical problem since the factors which affect
fuel usage on a particular flight are random variables - namely, the injection
errors, navigation errors, and velocity correction implementation errors.
Thus, the exact amount of fuel needed for the mission cannot be computed
beforehand and fuel tankage must be based on statistical averages.

A common procedure which has been used for establishing fuel requirements
is to (1) obtain rms values for the individual velocity corrections by a com-
puter simulation similar to that described in references 1 and 2, (2) adad
these to obtain an rms figure for the total AV, and (3) assume three times
this total as the amount of velocity correction to plan on for an adeguate



probability of success. Often the success probability figure quoted for this
method is 99.74 percent, which is the three-sigma figure for a gaussian dis-
tribution. There are two things wrong with this procedure. First, when there
is correlation between successive velocity corrections, the rms value of the
total is less than the sum of the rms values of the individual corrections.
Second, since the total AV has a nonzero mean and is nongaussian, the suc-
cess probability is actually greater than 99.74k percent. Thus, this procedure
will result in estimating a greater amount of fuel than is necessary for a
specified mission success probability.

To obtain a better measure of fuel requirements, a more accurate method
of determining the statistics of the velocity corrections is necessary. In
this paper, a practical Monte Carlo technique is described which can give the
desired statistical information. Also, by examination of some results
obtained using this method, an approximate rule similar to the three-sigma
gaussian rule is developed for interpreting rms figures in terms of probabil-
ity of success.

NOTATION
Bi guidance law matrix for dith velocity correction
B[ 1] expected value of [ ]
1 a portion (submatrix) of M
K weighting matrix in estimation equations
M matrix of partial derivatives in estimation equations
n noise, or error, in observations
p(Vi,ee,vn) Joint probability density function of the random varigbles
ViseoesVn
Q matrix of eigenvectors
( )‘Il transpose of a matrix
t time
AV the sum of the magnitudes of the vj
AV rms value of AV
Vees error in implementing vy
vy ith velocity correction



Vimy measurement of vy

Ve error in measurement of vy

Vorms - rms value of v

X state vector (vehicle position and velocity)

x* augmented state vector

X error in estimate of x, 2o x

Qi estimate of x Dbased on all observations preceding the ith
velocity correction

Qi estimate of x Jjust after the ith velocity correction

A@i change in Q due to observations in the interval between the
(i - 1) and ith velocity correction

¥ observation vector

¢) standard deviation

o4 state transition matrix between the (i - 1) and ith velocity

correction

ANATYSTS

Statement of the Problem

The analysis presented herein can apply to the midcourse phase of any
type of space flight in which impulsive velocity corrections are employed.
However, for the purpose of illustrating the method, we assume here a circum-
lunar mission and a self-contained on-board navigation and guidance system of
the type described in references 1, 2, and 3. The trajectory of the example
case and the schedule of observations and velocity corrections employed are
shown in figure 1.

The five velocity correction vectors in this schedule may be defined as
Vi1,Vz,++.,Vs. Then define

AV=/V_—L{+,VEI+ +/v51 (1)



as the total midcourse correction. The amount of fuel used in the five cor-
rections is proportional to AV 1if the mass of the vehicle is constant.?
For a statistical description of the guidance system performance, the statis-
tics of AV are required. For instance, to determine the amount of fuel
tankage to be provided for midcourse guidance fuel, one might want to know
the probability that AV will not exceed a given value, that is, Pr[AV < R].

In all that follows it is useful to make the reasonable assumption that
the individual midcourse velocity corrections have multivariate gaussian
distributions since this makes it possible to describe the distributions com-
pletely by covariance matrices. Furthermore, even if the vi are not
gaussian, only the covariance matrices are required if merely second-order
statistics of AV are to be obtained. Thus, the results obtained herein are
universally correct for gaussian vj and correct in regard to second-order
statistics for arbitrary vy distributions.

Description of AV Statistics by Means of a Joint Density Function

Computing AV statistics by any method requires a knowledge, either

explicit or implicit, of the Jjoint probability density function, P(Viyeee,vs)-

If the v4{ are gaussian with zero mean, then this density function is com-
pletely described by the covariance matrix

FﬁvlvlT EleZT . .. EvlvsT
EVEV]_T EV2V2
Bvvl = ' (2)
Ev5vlT EvsvsT
. p——

The (3 X 3) submatrices along the diagonal, EviviT, are the covariance matri-
ces of the individual velocity corrections. The off-diagonal (3 X 3) sub-
matrices depend upon the correlation between different velocity corrections.
Reference 2 gives the equations for the numerical computation of the EviviT,
but some additional analysis, which will be given later, is required to indi-
cate how the other covariance matrices may be computed.

Before proceeding with the analysis we will find it useful to discuss
the physical reasons for the existence of correlation between the individual
velocity corrections. Such correlation will exist whenever the knowledge of
the vehicle state following a correction is sufficient to compute a nonzero
velocity correction at a later time. In the present problem this condition
may arise in any one of three ways. First, each indicated (or commanded)
correction is imperfectly executed. However, since the correction is

lFor a nonconstant maés vehicle, tdfal fuel is proportional to a
weighted sum of the |Vi‘- This is a somewhat more complicated problem but
one which can be solved by application of the techniques herein described.
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monitored, the error is assumed known® and thus contributes to the corrections
made at succeeding times. Secondly, the guidance law employed by the guidance
system is generally designed to null some component of miss at a future point.
If at any time during the flight this aim point is changed, information is
already present within the system, without further observations of the tra-
jectory, to make a correction based on the new aim point. For instance, in
the circumlunar mission guidance system described in reference 2, the initial
aim point is a prescribed perilune, and velocity corrections are computed to
null the estimated position deviation at this point, without regard to the
velocity deviation which will exist upon arrival. When perilune is reached,
the aim point is then changed to a prescribed virtual perigee. The uncor-
rected velocity deviation at perilune obviously would produce a miss at peri-
gee which could be corrected, within the knowledge available to the system.
This correction then appears as part of the first correction after perilune
passage and is, of course, correlated with all the corrections made before
selection of the new aim criterion.

The third situation in which correlation between corrections may arise
is when all of the indicated correction is not applied. This is a matter of
guidance logic which does not apply in the present study because the assumed
guidance law is a full-correction scheme identical to that described in ref-
erence 2.

The problem is now to develop equations for the covariance matrices
Eviv-T which describe the correlation between individual velocity correc-
tions. It is of interest to note that in another paper on the statistics of
midcourse velocity corrections (ref. L4), the true character of this correla-
tion is not recognized. The error in reference 4 will be apparent later in
our analysis, specifically in the development given in the appendix where the
nature of the error will be discussed.

To begin the analysis, we note that the first velocity correction can be
described by the expression

A
vi = BiXy + Vee, (3)

A . .
where B; is the guidance law matrix at time +t, x; 1s the estimated state
vector at time t, and v,o is ttherror in executing the correction.
After the correction, the estimate X Dbecomes

A "
X1 = X1 + v

N
X3 + vy - Vmel (h)

H

N
(I + Bl)xl + Vcel - Vmel

Il

SErrors in measuring or monitoring the corrections are assumed negligi-
ble in this paper.

’ SIn equation (3) and those which follow, the velocity vectors are
regarded formally as six-component state vectors with zero values for the
first three (position) components. The B matrix is then formally a (6 X 6)
with zeros in the first three rows.



where wvm; 1s the measurement of the correction, and Ve, 1s the error in
measuring the correction. 1In the present study it is assumed that vpe < Vee,
so that from this point on for practical simplicity vme; 1is dropped, and
equation (4) is rewritten

N A
xi = (I + Bu)xy + Ve, (5)

A
Note that x; and vee, are (by assumption) uncorrelated random variables,
the covariance matrices of which are computed in the machine programs used to
obtain the results reported in references 1 and 2.

The equation for vs is of the same form as equation (3):
A
Vo = B2X2 + Vce2 (6)

and, Jjust as for the firgt velocity correction, Qz and Vi,e are assumed
k?correlated. However, Xz 1in general is correlated with "vy. That is, if
X, from equation (5) were updated to the time of the second correction by
means of the 6 X 6 transition matrix @(ts,t1), it could be used to compute a
velocity correction Bs®(ts,t1)x1, which is obviously correlated with v;.

In fact, this is the only part of vs which is correlated with vi, as is
shown in the appendix. It is, therefore, convenient for the purposes of our
analysis to rewrite equation (6) as

A n 2
Vs = Bo[xs - @(t2:tl)xi] + Ba0(tao,t1)x1 + Veep (7)

It is seen that the bracketed term in (7) can be described as the change in
the state estimate due to the sequence of observations between the first and
second velocity corrections. (Note that if there were no observations, %2
would be equal to the updated estimate @(tz,tl)%i and the bracketed term
would then be zero.) This term is thus appropriately defined as

Agz = [%2 - ®2§i] (8)

where the shorthand notation ®(t2,tl) = @5 has been employed. It may be
further noted that since the estimate is assumed to be zero at the beginning
of the midcourse guidance problem, say at injection, X1 can be defined like-
wise as a change in the state estimate,

Ag\(l = X3 (9)

If definitions (8) and (9) are used, and equation (5) is substituted for Qi
in the second term on the right of equation (7), the expressions for the

first two velocity corrections become:

N
vy = BiAx; + Vcel (lO)
A
Vo = B2®2(I + Bl)AXl + B2®2vcel
N
+ Bal¥Xz + Vee, (11)




Continuing in like manner for the third correction, one obtains
A
Vg = Bg@a(T + Bz)oa(I + By)axy + Bads(I + Bp)davee,
+ Bo2s(T + Ba)iRs + Budsvee,

+ BylXg + Vee (12)

The pattern is apparegt. Fach velocity correction can be written in terms of
the random vectors Ax; and Vee.. The random vectors on the right side of
equations (10), (11), and (12) are all statistically uncorrelated with each
other, a property which is proved in the appendix.

With the expressions for the velocity corrections AVisee Vs written in
terms of the ten uncorrelated random vectors AX;,...,AXs, Vee,stt s Vces
equations for the covariance matrices EViVjT in (2) can be written quite

. . . . ATRA T .
easily in terms of the covariance matrices FAX{AX;~ and EVcechei , 1i=1,...5.
For instance,

NN
EviviT = Bi[EAX1A%:T1B1T + [Evee,vee,T] (13)

A
Evivol = Bl[EAQlAXlT](I + By ) To TBT

+ [EvcelvcelT]®2TBgT (1)

Numerical values for these covariance matrices can be computed for any
particular assumed situation as an adjunct to the machine program used to sim-
ulate the midcourse guidance problem. Thereby, the covariance matrix Evv
of expression (2) can be constructed.

Numerical Integration to Obtain AV Statistics

Having the joint density function, determined as described above, one
may proceed to the computation of any desired statistic of AV Dby integration
over the 15-dimensional space of the +vi. TFor instance, the mean value of
AV is obtained from the evaluation of the multiple integral

EAsz"'fAVP(Vl)“‘)VS) dvll;"'; dV55

Of course, in general such an integration would have to be done numeri-
cally and the results would not likely be very satisfactory, either in regard
to accuracy or the machine time required for the job. This difficulty pro-
vides the motivation for employing a Monte Carlo approach as described in the
next section.



The Monte Carlo Method

The Monte Carlo method is a scheme that generates AV samples which are
consistent with the precomputed statistics of the random variables wvj;. From
a large collection of such AV samples, any statistical parameter desired may
be calculated by a straightforward statistical analysis.

Actual simulation of many complete flights for generating such samples
would be unthinkable because of the huge amount of computing time required.
Fortunately, this is not necessary. In a single simulation run the statis-
tics (covariance matrices) of all the uncorrelated random variables which
determine AV can be computed. All that is needed then is to randomly pick
values for these variables consistent with the computed statistics and com-
pute a AV using the functional relationship (1) between these variables and
AV. This is a relatively simple computational procedure and may be repeated
many thousands of times without using excessive machine time.

Equations (10), (11), (12), ete., could be used in the machine program.
However, i1t is a bit simpler to employ more basic expressions derived from
equations (3), (4), and (8). For each velocity correction the following set
of equations applies:

N
Ry o= MRy + 05xi (15)
N
vy = Bixy + Veet (16)
FAN
o=t vy (17)

The computationAof a sample AV begins with the f%rst correction (i = 1),
where Axj_; = X5 =0 by assumption. A random Ax; and Vee, are generated
and used in equations (15) and (16). The computed %1 from equation (17) is
then ,used, together with new random variables Axp and v.o_, to compute vo
and x5, and the process repeated through all the corrections. The total cor-
rection AV is then formed from

AV =z ‘vil (18)

and stored. Repeating this sequence many times gives the required AV
collection.

As stated above, the Monte Carlo computations require the selection of
random vectors consistent with the second-order statistics of the random var-
iables which comprise the velocity corrections. The procedure for doing this
is as follows. We start with a random number generator (available as a dig-
ital computer subroutine), which we may incorporate into the computer program.
This subroutine generates a sequence of numbers having a gaussian distribution
with zero mean and unit standard deviation. The numbers are all independent,
that is, uncorrelated with one another. A set of six of these numbers may be

8



regarded as a six-component random vector. Since the six components are
uncorrelated with each other, such a vector has, by definition, a diagonal
covariance matrix. Also this matrix has unit elements on the diagonal
because the individual random numbers have unit variance. Thus, if u is
the random vector, its covariance matrix U is

10000 6W
01L0000
001000
Buul = U = (19)
000100

600010

L0O00001

O

Now it is apparent that by scaling the random numbers which comprise the com-
ponents of u by, say, multiplying the first by a constant o1, the second
by 02, etc., there is obtained a random vector w with covariance matrix

012 0 . . . OT
0 o2
Ewwl = W = , (20)
0 082

Furthermore, if we apply a linear transformation to the scaled vector,
w' = Qw (21)

we obtain a new (related) random vector whose covariance matrix is not
diagonal:

Ew'w'T = QEwwiqTl

(22)

Thus, starting with independent gaussian random numbers, random vectors can
be constructed having any desired statistical properties (as expressed by a
covariance matrix).



In order to use this procedure it is necessary to diagonalize the covar-
iance matrices of each of the random variables in the problem to obtain the
o scale factors and the Q transformation matrices to be used in generating
the A&i and Vee:. from the random numbers. Thus, a diagonalizing routine
must be part of the Monte Carlo machine progran.

In summary, the Monte Carlo program consists of the following sections:

) Random number generator

) Diagonalizing routine

) Equations (15), (16), and (17)

) Statistical analysis computations

NN AN

1
2
3
I

Inputs to the program are the covariance matrices of the A&i and Veei ran-
dom variables, and the ©&; transition matrices and B; guidance law matri-
ces. These are computed beforehand in a run of the complete simulated

guidance problem.

~RESULTS AND DISCUSSION

A FORTRAN 7094 computer program was written to test the principles out-
lined in the Analysis section and to obtain some numerical results for use in
studying the general characteristics of the statistics of midcourse velocity
corrections. The program will not be described in detail here, except to
state that the statistics computed were the distribution function, the den-
sity function, the mean, and the rms value of each of the velocity correc-
tions and of the total AV.

The circumlunar mission employed as an example has been described pre-
viously. The assumed nominal circumstances pertinent to the present problem
are:

Correction mechanization errors (rms values):
1 percent in magnitude of the correction
1° in direction
0.1 m/sec in cut-off

Injection errors (rms values):
1 km and 1 m/sec in each of the three directions
in a geocentric coordinate system

Test results were obtained for this nominal situation and three varia-
tions thereon:

No velocity correction mechanization errors

(1)
(2) Twice-nominal correction mechanization errors
(3) Five-times-nominal injection errors

10



These cases were expected to give a fair idea of the effect on AV sta-
tistics of correlation between successive velocity corrections.

Figures 2 to 5 show the sample distribution and density functions for
each of the velocity corrections and for the total AV, for each of the four
conditions described. Each run has a sample size of 5000. Table I gives the
99-percent probability points (taken from the sample distribution’ curves),
the means, and rms values. The theoretical rms values (obtained from the
covariance matrices) are also given for the individual corrections.

A general comment which may be made regarding the density functions is
that they are noticeably nongaussian, so that gaussian approximations are apt
to be considerably in error, especially with respect to the tails of the dis-
tributions. For an a priori determination of the amount of fuel required,
the most useful piece of data is the distribution function which can be used
to determine how much velocity correction must be provided for a desired
probability of success. (A 99-percent probability of success here means that
there will be enough fuel to satisfy velocity correction demands in all but
1 percent of flights having the same characteristics.) The designer is here
always concerned with the tails of the distributions. Thus, a rather large
Monte Carlo sample is required if the sample data from which the tail charac-
teristics are determined are to be statistically significant.

One of the principal results to be obtained from the Monte Carlo statis-
tics is an indication of how conservative is the use of the gaussian uncor-
related assumption frequently employed to determine the fuel reguirements.
Specifically, we would like to determine: (1) How much greater than the true
rms AV is the sum of the rms values of the individual corrections, and (2)
how much less than three times the rms error figure is required to assure
99.7L4 percent mission success? The data for answering these questicons is
compiled in table II for each of the four situations simulated. The correc-
tion velocities corresponding to 68.26-, 95.44-, and 99.T7k-percent probabil-
ities are taken from the appropriate AV distribution curves. Also given
are the Monte Carlo rms Tigures, AVyys; the sums of the individual correction
rms values, L Vpyg; and three times the latter.

It is seen that the difference between Zvypg and AV, ranges from
3.3 percent to 12.1 percent for the four cases, the largest difference, as
expected, being in the situation where correlation between successive correc-
tions is most pronounced - that is, the large correction error case. The
smallest percentage difference is in the case with five-times-nominal injec-
tion errors, the reason being that here the AV is dominated by the first
correction and correlation is therefore relatively less significant.

The difference between the 99.74 percent and three Zlvrms figures is
seen to be substantial, ranging as high as 43.3 percent. This demonstrates
the error which would be made in assuming AVypg = LVypyg and assumlng a
gaussian distribution. The conclusion is that if fuel tankage is designed by
such a rule, an unnecessary reserve will be allowed. Or, looking at it
another way, the probability of mission success will be substantially greater
than specified.

11



Comparing the data in table II in another way, we see that the 99.74-
percent points range from 2.1 to 2.7 times the XZvypyg ITfigures. Thus, a sim-
ple rule for using ZvVypg data to determine fuel requirements might be to
multiply XvVemg DY, say, 2.4 to obtain approximately the 99.74-percent point
on the AV probability distribution curve. It was pointed out previously
that it has been the practice to multiply by 3 to obtain this figure, osten-
sibly on the basis that the probability density curve had a gaussian distri-
bution. Since the curve is not gaussian the multiplying factor is less than
3. With a factor of 2.4, a saving of 20 percent in the fuel required for
this portion of the mission may be effected. Depending on the specific situ-
ation regarding the magnitudes of inJjection and velocity correction errors,
the savings may be substantially more or less than 20 percent, which is to
say simply that a well-defined error model for the system must be given
before system performance can be finally specified.

To complete the discussion of the Monte Carlo results, some observations
should be made regarding the statistical significance of the data. A test
which is fairly simple to apply determines the significance of the observed
differences between the sample and theoretical rms values shown in table I
for individual velocity corrections. This test involves computing the
expected variations, or standard deviations, of the sample rms values and
comparing these with the observed variations. First we define the squared
magnitude of a particular velocity correction as a new random variable,

Y = | v|?. The sample mean-square value obtained from a Monte Carlo run is
another random variable.

slv P

Y=g

where N 1is the number of Monte Carlo samples of v. Now, by the central
1imit theorem, we can assume that Y is normally distributed with mean and
standard deviation given by

B(Y)

o=2 = E(Y®) - [E(Y)]®
Y N

&
Il

We, of course, know the value of N used in a particular Monte Carlo run.
We also know the covariance matrix of v, from which, because of the assumed
(multivariate) normal distribution of v, we can compute the expected values
E(Y) and E(Y®).

Performing these calculations for a specific velocity correction, namely
vy for the nominal situation, we find that M% = 69.71L and OY 1.378. The
sample value Y for this case is T0. b2, whlch differs from its expected (or
mean) value by 0.8L, or about 0.6 of one standard deviation. Thus, the
agreement between theory and the observation Y is satisfactory. Sincg the
0y 1s about 2 percent of My, it follows that the sample rms value, VY,
will have a standard deviation on the order of half of this, or 1 percent.
This certainly is a small enough uncertainty for this statistic so that the
rms figures given in table I are reasonably reliable measures of the theoret-

iecal values.

12



K

CONCLUDING REMARKS

The results shown indicate that the Monte Carlo method is a practical
technique for obtaining the statistics of midcourse velocity corrections.
Obviously, extensions are possible to various other (approximately linear)
problems in which covariance matrices have been computed.

It should be noted that the problem formulation employed in this paper
includes the assumption of linear guidance law matrices, B;. If the technique
described here were to be used for systems in which the guidance calculations
are nonlinear, it would be necessary to determine a linear approximation to
the guidance law to obtain the appropriate B4 matrices. Such a procedure is
seen to be relatively straightforward if one recognizes that in the linearized
problem the elements of B; are simply partial derivatives of the velocity
correction components with respect to the vehicle position and velocity state
variables. In some cases, analytical expressions for these partials can be
developed; in other cases, perturbation techniques can be employed in the com-
puter simulation of the problem to obtain the partials numerically.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., March 2, 1964
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APPENDIX

THE VELOCITY CORRECTIONS EXPRESSED AS LINEAR FUNCTIONS

OF A SET OF UNCORRELATED RANDOM VARTABLES

In the statement of the midcourse guidance problem, the ith velocity
correction is written as a linear function of the estimated state, %i, and
the correction mechanization error, Vees*

N
vy = Bixy + Veey (A1)

The Vae. and Qi are assumed uncorrelated with each other in the error model
herein employed. However, in general, these quantities will not be uncorre-
lated with corresponding components of the other velocity corrections. For
the sake of facilitating the design of a Monte Carlo statistical analysis
procedure, we would like to "orthogonalize" the set of random variables

%l, Veeq s in the sense of finding an equivalent set of uncorrelated ran-
dom variables in terms of which the vy could be expressed.

In linear algebra the Gram-Schmidt procedure for orthogonalizing a set
of linearly independent vectors belonging to an inner product space is well
known. The same method can be used to orthogonalize a set of random vari-
ables by employing the covariance matrix of two random vectors x and y in
the role of the inner product:

(x,y) = E[xyT] (A2)

where x 1is said to be "orthogonal" to y if (x,y) = O, that is, if the
covariance matrix E[xyT] is zero, or x and y are "uncorrelated." Although
we do not have here quite the situation in which one usually employs the
Gram-Schmidt procedure, we can still use essentially this technique.

First we need to establish some properties of the above function, (x,y).
From known properties of the expectation and matrix operazsrs, it is seen
that

T

1) (x,y) = (y,%)
ii) (x + y,2) = (x,2) + (y,2)

If A is a matrix of constants, then ? (A3)

i

11i) (Ax,y) = A(x,y)

(x,4y) = (x,y)AT

14




Now let wi,Wws,...,wn be random vectors, and construct another set of
random vectors, yi,...,yn 1in the following way: -

J1 = Wi
-1
Y2 = Wz - (Wz:Y1)(Y1,Y1) Y1

ya = wa - (wa,y2) (y2,¥2) *ve - (wa,y1)(yi,y1) 'y

> (AL)

Yn = Wn - (Wn;Yn—l)(yn_l:Yn-l)_IYn-l

-« oo (vpy) (ye,y1) "ty J

Al though (x,y) is not an inner product, it is seen from (A3) that it
possesses all the necessary properties of an inner product which we require
here, and the procedure represented by (A4) is conceptually nothing but the
Gram-Schmidt process.

Note that it is necessary in (AL) for the (y;,y;) % to exist for
i=1,...,n - 1. Since (y;i,v;) = Ely;y1T] is the covariance matrix of yj,
which is positive definite (except for certain exceptional instances which
require special treatment), (yi,yi) * will always exist.

If the process (Ah) is conceptually the same as the Gram-Schmidt proce-
dure, then we should expect that the random vectors y;,...,¥yn are orthog-
onal (i.e., uncorrelated). We can prove that this is so by showing that for
every m,

(ymoyy) =0, 1=1,2, . ..m-1 (45)
Beginning with m = 2, we have
(y2,y1) = Blwz - (wa,y1) (y1,v1) vl [y1T]

EwgyiT - (wa,y1) (y1,¥1) ™ ElyiyaT) (46)
T

li

Ewsy1® - BEwgyil = O

For m = 3, we find by applying the same method and utilizing (A6) that both
(y3,v1) and (ys,¥2) are zero. Continuing in the same manner, it is readily
shown that for every m, (ym,yz) = 0 for all 1 < m, which is what we set out
to prove. By interchanging the indices 1 and m it is seen that this result
implies that
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(yz,ym) =0 for all 1 #m (A7)

Thus, the random vectors ¥i1,...,yn @are orthogonal (uncorrelated) as
expected.

In order to apply the formulas (A4) to our specific problem, we mst be
able to write expressions for covariance matrices, such as (X 1:VceJ): (xl,xJ)
etc., which express the correlation between the pairs of random variables.

To find expressions for these matrices, we must go back to the theory of lin-
ear optimal estimation as given in references 1 and 3. The development pro-
ceeds as follows.

We begin by showing that AQi, the change in the estimate due to a set
of observations between the (i - 1) and ith velocity corrections, is uncor-
related with the estimate at the beginning of the interval. Assume a set of
k observations. The estimation equation for the jth observation is

A ) o= D% . MR .
X§<t3) - XJ—l(tJ) + KJ[yJ MJX?‘]&_l(tJ)] (AB)
or
A% = o o B
J J J-1 (89)
= K. . - M. X* ]
J[y Jg-1

where %% is the estimate (based on j observations) of the state vector
augmented to include the correlated observation errors (see refs. 1 and 3).
The yj is the observation,

vy = Myex ()

1l

Hyx(t3) + n(t3) (A10)

where x 1s the vector of vehicle positions and velccities, and n 1is the
additive observation error.

Now using equation (Al0) in equation (A9), and invoking the definition
of estimation error, X¥ = x*¥ - X*, we obtain

Ax
AXJ K M %% 5 l(tj) (A11)

Now the propagation of estimation error between observations is given by

% = o% . )x%* (t. L
xJ_l(tJ) o*(t tJ_l)xj_l(tJ_l) + nj (A12)
where
: t
nj sz op(ty, T)up(r)ar (A13)
tj-l

16



The @&¥ 1is the transition matrix for the augmented system in which the
observation errors are regarded as additional state variables; &y 1is the
appropriate submatrix of 0%, and is dimensioned so that the n3 adds only
to that part of X¥ associated with the observation errors.

Substitution of (A12) into (All) gives an equation for AR% in terms of
3% L. J
Xt and nJ.

X% M:n?t
j'l)xj-l(tj-l) * KJMJnJ (a1k)

A
AXy = Kij@*(tj,t
By induction, it is apparent that A%% can be expressed as a linear function
of the ié vector at the beginning of the sequence of observations and the
J vectors ni,...,na. Likewise, the total change in the estimate due to
observations in the interval is

k
A A
e =Z @*(ti,tj)m{g : (AL15)
J=1
and this is therefore a linear function of iﬁ and ni,,,,, '. Now, the prop-

erty of an optimal linear estimate is that the estimate and error in estimate
are orthogonal (refs. 1 and 3); that is,

N
Exgxx’ = 0 (A16)

Also, the quantities n! are uncorrelated with any random vector outside the
interval (tj_l,tj), or

=0

J ) j=l,..-,k (AlY)

) E&én
o IAS S . . Ay
ence, AX; 1s uncorrelated with X3, or
A AT A A
B[X; 8571 = (3, ,8%3) = 0 (£18)
By similar reasoning, we arrive at the conclusgion that all the Agi are
uncorrelated with each other, with any previous estimate, or with any pre-
vious correction mechanization error:
A A .
(Axi,qu) =0, i#q
AA .
(Axi,xq) =0, g<i (AL9)
A .
(Axi,vceq) =0, a<i

Also, by assumption, (Qi,vcei) = 0,

Returning to the application of the expressions (A4) to the midcourse
velocity correction problem, we can now write:

17



n N
yi = X1 = AXy
N -
o = Vcel - (Xl)vcel)(vcel)vcel) chel = vCel

N - n A N
Yg = X2 - (X2}vcel)(vcel’vcel) chel - (X2:AX1)(AX1)

(A20)

(A21)

(A22)

A
The covariance matrices (%2,Vcel) and (Qg,AXl) are evaluated by apprlying the

relation (from eq. (15) in the text):

A
X2

Ii

AY N
@2}(1 + AXE

N
0o(T + B1)ARY + Oavee, + ARn

Il

A
Since (A&E,vcel), (vcel,AQl), and (AQE,AXI) are zero from the preceding

development, we find
N
(X2,Vce;) = ®2(Vcel:vcel)

A A A A
(X2,/%x1) = 0o(T + By)(Axy,Ax%1)

Hence,

A N
ya = Xp - <I>2vcel - @2(1 + Bl)AXl

AX2
For y,, we then have

A AEATE T VA
Ya = Vee, - (vceE,Axa)(sz,sz) AV

)"y

- (Vceg’vcel)(vcel’vcel

A A A 1A
- (Vcea:Axl)(Axlyﬁxl) Ay

A n
where (vcez,Axg), (Vceg:vcel): and (VceE;AXl) are zero, and
Ya = Veeo

Then for ys, we have
N N -1
Y5=X3"(vawgﬂvw2ﬂd%) Vees

AN D DA
- (X ,0%2) (MXp,0%0) ~HAX,

N -
- <X3fvcel)(vcel:vcel) chel

A A TAY A -1, A
- (R0 ) (AR, ) THaxy

18
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To evaluate the covariance matrices, we substitute

Rs

0,(I + Bp)Ro + Oavee, + MR

I

®3(I + Bp)0o(I + By)ARy + 03(I + Bo)0avee, (A29)
N N
+ 03(I + Ba)Ma + @aVee, + &Xs

and we can then determine that

A h
(Xayvceg) = ®3(Vceg:vce2)
A A A
(Ra,0%2) = 05(T + Bz)(aR2,ARz)
A ) (£30)
(Xa3,vee,) = @5(T + B2)02(veersVeey)
A N A
(Ra,8%1) = 05(T + Bz)oo(T + By)(AXy,A%;)
Py
From this it is evident that
vs = AR5 (231)

Proceeding in like manner, we see that the required orthogonal random vari-
ables are A&l,vcel,...,ﬁ&n,vcen, where n is the number of velocity correc-
tions considered.

At this point it is easy to see the error which has been made in ref-
erence 4. 1In effect, the authors of reference U4 assume that the estimation
error is uncorrelated with the actual state, and that the estimation error
after m+ n observations 1s uncorrelated with that previously obtained from
m observations. That this is not so is readily determined either by a direct
application of certain relations developed above or by a unique argument to
the effect that there is only one possible complete set of uncorrelated ran-
dom variables, namely, the set given above.
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TABLE I.- SAMPLE STATISTICS

Condition Velocity correction
statistic, i -1 - Bl
meters/sec V1 Va V3 Va VS &V

No velocity correction

error '

99-percent probability | 21.45 | 3.1k 1.94 5.22 | 0.36 27.65

Sample mean 6.74 .991 .695 1.69 117 10.23

Sample rms 8.39 | 1.26 841 2.08 .146 11.75

Theoretical rms 8.41 | 1.22 .813 2.05 .148 -—-—

Nominal

99-percent probability | 21.50 | 3.82 2.75 6.31 | 3.41 29.33

Sample mean 6.74 | 1.22 .969 2.03 | 1.12 12.08

Sample rms 8.40 | 1.49 1.13 2.49 | 1.36 13.43

Theoretical rms 8.L0 | 1.48 1.13 2.47 1 1.37 —_—

Two -times-nominal veloc-

ity correction error

99-percent probability | 21.41 | 3.47 3.6k 7.29 | 7.16 31.73

Sample mean 6.75 | 1.18 1.33 2.43 | 2.32 14.0L

Sample rms 8.41 | 1.40 1.54 2.94 | 2.82 15.26

Theoretical rms 8.41 | 1.39 1.53 2.9L | 2.83 -

Five times inJjection

error

99-percent probability |107.0 k.09 2.61 19.00 | 5.95 130.50

Sample mean 33.82 | 1.66 1.0L 5.95 | 1.95 Ll Lo

Sample rms Youih | 1.85 1.15 7.36 | 2.37 53.13
LEFeoretical rms 42.13 | 1.84 1.15 7.24 | 2.38 -
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TABLE II.- EVALUATION OF THE "THREE-RMS" RULE

Statistic, No velocity
meters/sec correction
error
AVy, 826 12.02
AVy, 9544 21.83
My, 9974 3L.25
AV g e
Vs 12.69
38rms 38.07
oL
EVrms - AV (8.0%)
6.8
38V,ns - &G 0074 (21.8%)
A,
b.os74 5. 16
v

22

Condition
T Two-times~
. nominal
Nominal | 1ocity
correction
] error
13.95 16.17
23.78 25.77
33.40 35.80
13.43 15.26
14.87 17.11
.61 51.33
1.4h 1.85
(10.7%) (12.1%)
11.21 . “15.53
(33-6%) (u3-3%>
2.25 2.09

" Five-times -
nominal
velocity

correction
error

53.7
103.9
148.0

53.13

54.87
164.61
1.7k

(3.3%)
16.61
(11.2%)

L. .

2.70
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Figure 1.- Schedule of observations and velocity corrections.
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